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One of the major difficulties in the formulation of effective shell
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elements has been identified to be the phenomenon of membrane locking.
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Membrane locking occurs in curved shell elements when the in-plane displace-

o

el

ment approximation is not of higher order than the transverse displacement ), A
approximation and inextensional bendiny of the shell cannot take place. :
Inextentional bending is an important mode of deformation, and when an element
is not capable of representing inextensional bending, parasitic membrane
energy is generated in many modes of deformation. In the same manner that
parasitic shear causes shear locking, this spurious membrane energy causes

u membrane locking. Membrane locking severely reduces the rate of convergence

of shell elements, particularly in deep shells and in situations where the

bending of the shell is the dominant mode of deformation.
In this report, two methods for eliminating membrane locking in curved

shell elements are presented. The first method is a strain projection method

in which the membrane strains are corrected so that inextensional modes of

pure bendiny become possible. The method is applied both to a curved beam ..
“_\:,.:.

element and a triangular shell element in which the flexural behavior is iﬁﬁii
RN,

modeled by a discrete Kirchhoff theory. The use of this projection method :f\jaf:
SN,

introduces membrane-flexural coupling to the shell element and modifies the
bending stiffness in an appropriate fashion. Results have been obtained with

this element for linear analysis of static response of deep shell structures

and for nonlinear, collapse analysis of columns and cylindrical panels. The
results show a remarkably rapid rate of convergence.
The second method which is under investigation for avoiding membrane

locking is the use of uniform reduced quadrature on the 9-node Lagrange
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i if 2 x 2 quadrature could be used in the curved shell element, membrane Ime
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In this investigation, a spurious mode control scheme has been developed

4
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&
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E; for the 9-node plate which eliminates spurious modes compietely. The method ;EEEE
iﬁ is based on retaining the formal consistency of the governing equations of the &E{E
: systems, which is equivalent to satisfying the patch test. As a result of e
&: these properties of the spurious mode control method, results which have been

Si obtained for this plate show nearly the optimal h3 of convergence.

2y

In Chapter 1 of this report, the projection methods are developed. 1In ff*\
the first section, the projection method is developed for a curved beam in 'fffg
order to illustrate its essential features. Section 2 then uses the develop- Ezf:

i' ments for curved beams in a very simple fashion to develop a projection

E? operator for the 3-node triangular plate element; this element uses a constant ;é;;;
E§ state of membrane strain and either the discrete Kirchhoff theory DKT flexural E;;;E
;: element or a (% bending formulation with one quadrature point. Results are I
EE then given in Section 3 for a series of static problems and two dynamic

SE problems involviny the collapse of shell structures.

:: In Chapter 2, the procedure for spurious zero energy mode control for the

gé 9-node element is developed. The development is first given in the setting of

iﬁ the Laplace equation, where the role of the spurious mode control procedure is

quite transparent and the important role of maintaininy consistency with the
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spurious mode control procedure is illustrated. Results obtained for the
Laplace equation show that by using the spurious mode control procedure, con-
vergence in the Ly norm of order h3 can be achieved for rectanygular meshes,
whereas some deterioration in the rate of convergence results when the
e]eménts are curved or skewed. However, the same deterioration in the rate of
convergence occurs if selective reduced integration is used. The method is
then applied to plate problems. A large series of plate problems, some of
them involving situations where convergence is very slow, such as a rhombic
plate modeled by parallelogram elements are considered. In all cases, very
rapid rates of convergence are achieved with this element and no spurious

modes are present,
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CHAF,ER 1

STRAIN PROJECTION METHODS FOR CONSTANT STRAIN ELEMENTS

1. Introduction

The development of an effective but simple shell element which incorp-
orates the effects of the curvature of the shell but avoids locking and
spurious kinematic modes is essential for effective and economical analysis of
shells in the failure domain. However, while elements such as the 16 node C°
element are quite accurate, their complexity and high cost makes them unat-
tractive for nonlinear analysis. Lower order or flat elements, on the other
hand, tend to be excessively stiff and a very large number are required for
accuracy.

In this paper we sketch the development of a simple, curved, triangular-

shell element. The element has the following advantages:

1. It correctly represents rigid body motion.

2. It correctly represents states of constant membrane strains and
constant curvatures, and thus allows for inextensional bending and
eliminates 1embrane ltocking [1].

3. It couples bending and membrane effects within an element.

4, As opposed to various elements based on selective reduced integ-
ration, it possesses no kinematic modes [2-4].

5. HWhile it is perhaps the simplest curved shell element (compare [5-
17]) the element yields surprisingly accurate results, often superior

to those obtained by more complex elements.

The basis for this element is the mode decomposition technique described

for the curved beam in [18]) in conjunction with a shallow shell theory. It
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should be noted that contrary to the results of earlier investigators [12,19], ;(wgg
oo
al
use of a shallow shell theory in our case does not diminish the element's T
(e
performance in deep shell problems. tﬁ:;:
\~‘__ll‘;~
The mode decomposition technique is used to achieve an element free of :f:,-
,\{'.'.
membrane locking and with the correct relationship between membrane and -
u':\:.;‘- J
bending effects. The DKT (discrete Kirchhoff theory) element [20,21] (see ggqu
also [22-24]) is used to form the bending part of the stiffness matrix. This giﬁit
. P,

portion of the stiffness matrix may be replaced with any other triangular

plate-element stiffness matrix provided that corners are the only nodal points

of the element. However, the most rigorous justification of the development kﬁii
i presented herein is related to the DKT element. ui:;
: To make the paper self-contained, we begin with a short presentation of Eiiz
: the major ideas in the context of curved beams. This is followed by a E?éi
i development of the triangular shell element. Finally, the performance of this ?f'“
. element is demonstrated by a number of solutions to various shell problems. %;:f
é Some general remarks conclude the paper. Eésg
i A,

2. Curved Beam Element

. oo

A conclusion that can be drawn from [25-32] is that the ability to

. represent independent bending and membrane strain states is crucial for the KA
. success of a curved beam or shell element. However, satisfaction of this 52
. requirement is difficult and has only been accomplished by using the so-called fﬁ:&ﬂ

assumed strain elements [26,27,30]. Unfortunately, this approach appears o
impossible for arbitrary shell elements and so far only cylindrical shell

. elements have been formulated by this method [33-35]. Another important

conclusion of past research is that the proper inclusion of riyid body motion
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considerably improves element's performance {36-39], but this is not central
to the topic of this paper.

In [18] (see also [40]) a different approach has been taken to meeting
these conditions. It allows for simultaneous existence of both membrane and
bending strains in all patterns of deformations but, at the same time, for any
given set of nodal deyrees of freedom, it defines certain modes of deformation
from which the membrane strain eneryy is removed. Since only the bending
strain energy is assigned to these modes, we call them bending modes. The
remaining portion of the total deformation is called the membrane mode. This
modification of the membrane strain energy results in a modified and better
element stiffness. A theoretical justification for this approach to curved
beams throuygh the Hu-Washizu variational principle is given in [18].

To describe how the bending mode and consequently the membrane mode is

defined, consider the curved beam shown in Fig. 1. To properly account for i ]
N
- \q * |
rigid body motion and for the sake of simplicity, we consider the element in a ::f;i:.
NN

corotating frame whose x-axis passes through both of its ends. A theory of ﬁ}}ﬁ;
s

[al" P

shallow structures will be used with the following kinematical relationships P
PR

DDA

0 a- o

€= U, * W, W, (la) ?ﬁ?;?j
AN

K== Wy (1b)

DR
R
PRt R

‘l

where w® describes the initial shape of the element, u and w are displace-

5

ments, parallel and perpendicular to the chord respectively. The deform- {tfgﬂf
INGNEN
B

ational degrees of freedom are -:::i:
\'-".-

f':}l:. ] .u
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g = Lugps o5 00 Ya1 T U - Y (2a)
8 = 01 = T (wy - W) (2b)
0 = 037 < T (W - W) (2c)

where uj is the relative longitudal displacement of the riyht end with

tot

I the total

respect to the left one, ¢ are the deformational rotations and ¢
rotations of the nodes.

The following interpolations are used for u, w and wl.

U= Uy & (3a)
W= Lo(gNp + 0oN,) (3b)
wl =L (a Ny + a,Ny) (3¢)

where a,, a, are rotations associated with the initial shape of the element, L

is its lenyth and

Nl = ¢ - 252 + g3 (4a)

R A (ab)
X

£ = T (4c)
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In view of Eq. (1b) it is evident that the distribution of curvatures is
related exclusively to w. However, based on Egs. (3a,3b) and (la) it is also
evident that for any x # U, when W, # 0 then ¢ # 0, so inextensible bending
states are impossible for the approximation given in Eq. (3). This is
precisely the cause of membrane locking discussed in [1]. However, as opposed
to the reduced inteygration employed in [2], membrane locking can be eliminated
by mode decomposition [18], which provides a more rational and accurate
method.

In the decomposition technique, through physical arguments certain modes
of deformation are required to be free of membrane strain energyy. An operator
is then developed so that the element satisfies these requirements. For
example, in a curved beam, the nodal displacements are decomposed into bending
and membrane modes. In bendiny mocdes, the membrane strain eneryy is required
to vanish. A similar approach has been developed to avoid shear locking [3].

To define the bending mode of this decomposition, note that in inex-
tensional bending, the chord of a curved beam must, in general, change in the
length. This longitudinal displacement “21 is associated with the rotations
9 and 9y and define the bending mode. This mode of deformation must be free
of membrane strain energy for inextensional bending to be possible, which is
imperative if membrane locking is to be avoided.

The bending mode can be easily determined by considering that, for the

displacement fields given in Eq. (3b,3c), and the curvature field defined in

.
-
..
»
..
.
.
L)

N A
. . . . » !.‘."-‘
Eq. (1b), inextensional bending is accompanied by the following extension of AN
L.
the chord POy
A ~,
RSN
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N Ny
[ RN
, L :!::-"
W= - J Wy, w, dx = ¢, L (- 2 o +ia )+ 6, L (- 2 a, + i a )
21 'X % 1 5 71 30 %2 2 5 %2 " 30 % "aman
b _-\J- .
: )
B 'R
N .-:.-_:.r
(5) 0w
PN
: ]
. If it is assumed that ¢ = 0 (inextensibility) the expression can be derived ol
; e
o\ from Eq. (la). The complete set of nodal degrees of freedom in the bendiny ~j:$n
v l'\, '.'
2 Ot
mode is therefore
[ ’.r;:r
A byT - [,b : -
:_ (g ) = [U21 ’ ¢1 ’ 4’2] (6)
'j Since the sum of the two deformation modes yives the total deformation, the
E membrane mode is described by
N my\T . _ b
N (d%) [u21 usqs U, 0] (7)
' The strains related to both of the above modes can be computed according
.- to Eqs. (la,lb). However, the membrane strain energy associated with the -t::;:
- I
A 4
j’ membrane mode should only be considered in deriving the stiffness. Thus the A
strain energy is given by s
1 k2 1 -2 ey
;, U= A / Db K dx + -z-f Dm e dx (8) R
o} [N
X ".: '.;_.I
2 .
) where T
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D, = EI, D= EA , € = _gl_t__gl (9)
and E is Young modulus, I the moment of inertia and A the cross-sectional

area. The element stiffness matrix, as usual, is obtained from Eq. (8) and is

given in terms of the deformational degrees of freedom d by

L L

:or-l:o
') o

2
4 + Rc1 2+ Rc1c2

st
i

(10a)

_ 2 + Re,c 4 + Rc

2
L 172 2

where
2 2 1
C1 = Tbr 0.1 - ~3—0- 0.2 (10C)

c, = %g a - %U o (10d)

The global stiffness matrix is

- —
I}
11—

(11)
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-C -s 0 c 0

11 = s/L -¢/L 1 -s/L c/L 0 (12a)
s/L -c/L 0 -s/L c/L

s = (y; - y)L c = (xp = x))/L (12b)

It is important to note that inextensional bending is now possible and

that, through the nonzero values of klZ and 213, coupling between membrane and

flexural behavior is introduced. Hence the main characteristic of a curved

element is retained.

Remarks:

1. Although a physical approach has been

presented here, a formal

equivalence between the above formulation and a mixed formulation has

been established in [18]; the technique can also be viewed as a

strain projection method,

2. It can be shown that this formulation
"exact" (without any modifications or
displacement formulation which can be
by replacing the linear interpolation
fifth-order polynomial that satisfies
beam.

3. The same approach can also be adopted

is also equivalent to an
reduced integration)

obtained from the present one
for u yiven in Eq. (3a) by a

e = 0 at each point of the

for higher order elements,

[18]. However, the hiyher the order of the element, the less severe

the membrane lockinyg [2].
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4, for a straiyht beam, the stiffness matrix obtained from Eq. (8)

- X y
reduces to two matrices: a bar matrix and a beam matrix with no A
. v
: interaction between them. ol
’, PR
- o
] .ﬁ
! ) . %.-:J-‘*.:
3. Curved Triangular Shell Element N
i By
: RO
YA The triangular shell element has three nodes at its corners and the -}.::.:
.l: ;'h&{‘\
y corotational plane (x, y) is always defined by these nodes as shown in Fig. Sf-}ﬁ:
) 2. The vectors gy, I =1 to 3, are unit vectors in the positive directions of S
X the local coordinates of the sides, §; € (0,1). :'-Z;:'.-‘_
. r".-:':-
\ The nodal degrees of freedom at each node are ;:::-Zj
. L' ".‘
; tot tot  tot tot .tot ,tot \’:ﬁ\
ot _ 0 0 0 0 0 = NN
- 9 (uxI . uyI s W s 801 eyI ) I=1t3 (13) :-{'3.;«
- e
AT
" For simplicity, the basic developments will be presented in terms of :-_-«_1
‘ o
< > -
- deformation nodal displacements j.-j::}.
s e
% RO
; al = (o', 8" (14a)
> .‘-::\::
: T
N r
» L\T = (nys nys n3) (14b) roe
, ol = (o s 81 8,95 B0y 8,3, 0 2) (14¢)
h ~ X1’ Ty X y2’ "x y
o
o where n{ is the elonygation of side I and By eyl are the deformation nodal k
; rotations at the node I, which are given by
y R
: R
o R
. Y
:' o
‘ PN
: ;'C:“\
- !ﬂ::.
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- atot

1 = Ok = 9y {15a)
_ .tot _

eyl QyI wy (15b)

where w, and wy are the rigid body rotations of the element.

The membrane state of strain is considered constant with linear
u, and u.y and the discrete Kirchhoff theory (DKT) is used to describe the
bending properties of the element. In the DKT element, the rotation field is
quadratic and the transverse displacements are cubic along each of the sides
L20].

It should be noted that the discrete Kirchhoff constraints are imposed at
three points along each side, which guarantees orthogonality of the tangential
component of the normals to the midline at any point of the side (see [20,21]
for details). Therefore each side of the element deforms in exactly the same
fashion as the curved beam based on Kirchhoff {not discrete Kirchhoff) theory,
described in the previous section. Thus, if the in-plane displacements are
linear (strains are constant), inextensional bending is not possible.

Therefore, a modification similar to that employed in the curved beam
element is made: the in-plane elongations which should accompany inextensional
bending are first determined, and their contributions to the membrane
strain energy then are removed.

The initial curved shape of the element is described by wo(x, y), which

along each of the sides I is gyiven by

o =1 [
W) = o 2y Ny 8g) % ey 4 Ny (5] (16)
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N I 1
N where ay and a, are the initial rotations of the midline for side I, %1 the
I.
* length of side I, and NJ(E) are given by Eqs. (4).
;i In the DKT element, the transverse displacements along each side are
i; given by
Py
3 wigy) = ol o0 Ny (g) + el o N, (g)) (17)
j: I 17171 Y7l 2 "1 "2 ‘*l
) where
-,
-
b7 L=9 e -6 ¢ 18
e 91 7 %1y " Byo Cix (18a)
2 o =08 e -0 e (18b)
i; 2 xI "1y yl “Ix
R
>
;L and d =1 -1,d=3forl1-1-=0.
The elongational strain and curvature along each edge are given by ;if
N
.';-.
LS
) - + o] (19 ) "-t::
‘ €y = us,s Wag Wi a o~
el g
e
C]
:: KS = - w’SS (lgb)
‘1 From the similarity of Eqs. (1) and (3) to (16), (17) and (19), it is
\
S
A readily apparent that each side of the plate behaves exactly like the curved
')
s beam described in the previous section. Thus, if inextensional bending of the
i shell element is to be possible, the elongations of the chords associated with
-
.$ bending must be omitted from the membrane strain energy.
L
< The bending elongation component of each side is yiven by the counterpart
Y
\.
\.

X

SR
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: 12 Lo
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> of Eq. (5 N
c q ( ) > ',:I‘-.;
b_1 I a1 Iy , 1 .1 I _ .1 RO
s R
¥ 58
Thus if the total strain energy is taken to be , .
AR
-\.- »
3 353
N R
2 =1 .7 1 _ b _ b Ry
W U=58 K 8+5(n-n)K,(n-n") (21) o
h2+ Ny
P T
é then bending without any membrane strain energy will always be possible. 1In o
Y .
3 the above, K, is the plate bending stiffness of the element expressed in terms -
)
of its 6 deformation modes, 9, and '»Sm the membrane stiffness expressed in -
o,
. terms of the deformation modes n; 5m is identical to the stiffness of the
iCa
. well-known constant-strain triangle but expressed in an alternate set of
4
~ degrees of freedom, it is given in Appendix A. It is also possible to
Ij: describe K m directly in terms of nodal displacements.
lj-' It is convenient to express Db in terms of g by
o =I1¢ (22)
= where T is given in Appendix A. Using Eq. (21-22), the stiffness of the shell
N element can be shown to be yiven in terms of the deformation degrees of .;i,:::l"
. ._::\::._
2 freedom by ::::::
. ;__',-':.- !
o
LA ~.i‘--.
- - NS
- Km K 1 DNN
y K=| 71 T (23) NN
'T K K + T K T -," .'.q_
; ~ ~m ~b ~n ~ :.::h
i ‘:..-\::'::‘
- WSS
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~j In the above equation, the effect of the decomposition becomes transparent: \ﬁ\:‘
*, A
i 1) it introduces membrane-flexural coupling through the terms K T. -

. e RS,
E: 2) it allows the membrane stiffness to effect the bending stiffness. :j:ia
. s.,\‘:_\
ﬁ' These effects are absent in any flat shell element. Thus, the most important tjsja

L9

s
‘ features of a curved element are embodied in this element, L
¥ A
N el
\ . >
N Remarks: SAORY
v RN
N NS
N 1. 1In this element, independent states of arbitrary curvatures (bending YL

modes) and membrane strains (membrane modes) are possible. Thus the ele-

PR

IR
-."
“ )
3

&: ment can always bend without extension. Although not all shells allow for ﬁ?{
E; inextensional bending (see [32] for example), the ability of the element :Zi:
E! to undergo inextensional bending, regardless of its shape, is beneficial, *i“i
Eﬁ because if inextensional bending is not possible in a particular shell, :?Eéz
rﬁ the appropriate restrictions on the bending are introduced by interactions iigla
x between elements, but not the element itself, Gif=;
&; 2. For linear problems, the element stiffness matrix of Eq. (23) can be iEESE
E; expressed in closed form, so no numerical integration is needed. This E%SE&?
results from the fact that all the matrices involved in Eq. (23) can be ;{u{
expressed in a closed form (see [21] and [41] for details). §EEE
3. For a plate problem T = 0 and no interaction between bendiny and membrane 5?55-

effects exists. .

"o :_ L.
*, LN
j- 4. Equation (20) is fundamental in deriving the element stiffness matrix for {:_;.
' DAY
the curved triangular shell element. It is valid for a cubic approxi- iy}:“
mation for the initial shape of the element sides and a cubic approxi- B

«

ol
. . ‘el
mation of transverse displacements. For those reasons, the DKT element ifa;e
=
. . . . . . B A
which incorporates cubic transverse displacements along each of its sides AN
‘P
. ‘z-\' >
seems to be appropriate for the present development. However, other ele- -
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ments can be formulated with cubic interpolations alony each side. The

matrix T of Eq. (22) would then remain the same but the matrix Kp of Eq.
(23) may change. Therefore Eb can be associated with other formulations
of the triangular plate element without changing the matrix T. In
addition to the results obtained with Eb associated with the DKT element,
results obtained with Ky from an earlier paper [4] will be presented (see
also {3]). This matrix was found to closely approximate that of the DKT

element althouyh it is simpler and more economical computationally.

4, Numerical Resuits

Results are presented for a variety of linear static and nonlinear tran-
sient problems. The purpose of the first set of examples is to illustrate the
enhanced accuracy of the curved element over a flat element, and to verify the
absence of membrane locking., Moreover, some deep shell problems are con-
sidered to emphasize that elements based on shallow theory do converye to the
deep shell solution. The second set of problems serves simply to illustrate
the potential of this element in highly nonlinear situations such as
encountered in collapse and post-buckling analysis.

Results are presented for two bendiny stiffnesses: the DKT stiffness

{21] and the C° bending stiffness developed in {3,4].

Bending of an Infinite Circular Cylindrical Shell

The problem description is given in Fig. 3. This is in fact an arch in a
state of plane strain, The problem has been solved with the curved shell
element and with a flat element. The results normalized with respect to the

analytic solution are given in Table 1. As can be seen, the results improve
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dramatically when the initial curvature is taken into account.

>
hY
“~

For a different arrangement of elements, the results obtained with the
flat elements may be better., However, in the analysis of ygeneral shells, the
selection of a mesh is not as easy as in this case. We therefore have
selected the mesh shown in Fig. 3 to illustrate that a combination of flat
elements and an inappropriate mesh can result in a considerable stiffening of

the model. Our element successfully avoids this problem.

Pinched Cylinder with Free Edyes

The cylinder and the related data are given in Fig. 4. This problem has
been analyzed by many authors and their results are compared to ours in Tables
2 and 3. The total number of degrees of freedom was the same for all
solutions. Both curved and flat elements with both the DKT and the C® bending
formulations were used. It is clear that our element compares very well with
the most accurate elements of others, including formulations which were
designed specifically for cylindrical shells, [36], [43].

It is interesting to see that in this case the improvement achieved with
curved elements is small. This is perhaps because the variation of displace-
ments alony the meridian of the shell is relatively small (in spite of the
concentrated force) due to the small ratio of length to radius (see Fiy. 4).
This problem is not a demandiny test on the performance of curved shell

elements.

Pinched Cylinder with Diaphragms

The problem and pertinent data is depicted on Fig. 5. The results
obtained with both curved and flat DKT elements alony with those presented in

{42] are reported in Table 4. The erratic behavior for the 2 x 2 mesh is due
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to the inadequacy of the shallow shell theory for the relatively deep element

emerging from such a coarse mesh. A considerable improvement is obtained with

curved elements,

Ny
Impulsively Loaded Cylindrical Panel

This problem is defined in Fig. 6 and Table 5. The ends of the panel are ff:jf“

simply-supported, while the side boundaries are fixed. Both material and

geometric nonlinearities were considered. The load was applied by prescribing

the initial velocity given in Fig. 6 to the nodes in the region loaded by the

explosive. Figure 7 shows an undeformed and deformed mesh. Table 5 compares

the results obtained for various meshes to an experimental result. It can be

seen that the convergence to the experimental value is relatively slow. The

reason for this however, is not the accuracy of the element, but the extreme

localization of deformation which occurs due to the formation of plastic
hinges.

Collapse of a Hollow Column

Figure 8 shows the simulation of a hollow column loaded axially. The ;\;\i
N

time history of the load and material and geometric properties may be found in 112:;1
'.’.-I:':F

Fiy. 3 and Table 1 of Ref. [44], respectively, where results obtained with a 4 Kt

node yuadrilateral element using one-point quadrature and hourglass control

are also given. The results obtained with this element compare well with

those obtained for the quadrilateral, except the model is somewhat stiffer.

Note the severe change in cross-section which accompanies buckling.
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The matrices Kn and T of Eq. (23) will be presented here in the form “
consistent with the deformational degrees of freedom yiven in Eqs. (14b) and R4
(l4c). N

To obtain the required form of 5m note that it represents membrane strain e
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TABLE &

peflection Under Point Load for Pinched Cylinder

with End Oiaphragm*

Ovorkin

mesh | degrees | orr ;
on | of , and

i ectant . freedom . curved | flat  -Batne 732.
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'oaxa 8 o017 0 062 | -

Sxs | 19 - | - et
j exs 186 | 0.263 | 027 b
i 8x8 28 | 0.948 | 0.960 b ;
| 10210 | 10 { 0.988 i 0.93 | o0.83 !

Young's modulus
Density
Potsson's ratio
Yield stress
Plastic modulus
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* Results are normalized by exact solution, 0.1R248 x lc'a,

TABLE §

Material and geometric constants for impulsively

loaded ¢ylindrical panel
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0= 2.5x 1074 1b-sec2/1'n4
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Figure 4. Example 2. Pinched cylinder with free edges.
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v CHAPTER 2
SINGULAR MODE CONTROL IN 9 NODE PLATE ELMENT

. 1. Introduction

The numerical quadrature of higher order elements is a critical issue
which must be treated with considerable care. It was recognized by
\ Zienkiewicz et al [1] that in order to obtain reasonable rates of convergence
for CO plate and shell elements, reduced integration of the shear terms is a

necessity. Recently it has become clear that for curved elements,

overinteygration of the membrane terms [2-5] also impairs converyence; this

N R

? phenomenon has been termed membrane locking. In fact, this phenomenon also g&;&;

f occurs in the application of continuum elements to curved members [5]. :"xﬁni

! On the other hand, reduced integration leads to the appearance of ;;Eiz

. spurious singular modes, and several of the elements which have appeared in EEEE:
the literature for plate analysis cannot treat the modal analysis of unsup- ?f?f:;
ported plates because they rely on boundary conditions to suppress these égézg
spurious modes; see for example the results in [6] on the plate element of Sgsg;_
[7]. These modes are also known as kinematic modes, spurious zero-energy i‘ ;E

j modes, and for the 4-node quadrilateral, as hourglass or keystone modes. ;;2;3;

E In the 4 node continuum and plate elements, considerable progress has ;ﬁ

: recently been achieved in controlling hourglass modes. Kosloff and Frazier F:PJ}
[8] first recognized that in controlling spurious singular modes, care must be
taken to ensure that the resultinyg element will pass the patch test and not

f adversely affect rigid body and constant strain patterns. While the method of

2 [8] involved the solution of systems of equations, in [9-10] explicit forms of

; the operators for controlling singular modes were developed. In [11], these

E forms were derived from the consistency conditions (which are equivalent to

. the patch test [12]). This, in constrast to [8], makes the development of

simple, explicit forms of the spurious mode control feasible for a large class
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of elements; by using a mixed variational principle, the identification of
control parameters for nonlinear materials was also achieved. Applications of
these concepts to the diffusion equation, plate, and shell problems are given
in [(12-14], respectively. The development of plate elements of proper rank
has also been undertaken via hybrid [15] and mixed formulations [16].

In this paper, the consistency conditions will be used to derive a
spurious mode control for the 9 node Lagranyge element. Pawsey [17] evidently
first noted their appearance in higher order elements. Shortly thereafter,
Cook [18] proposed a control which consisted of simply addiny a spring between
the center nodes of all elements and a fixed point. This method obviously
would not pass the patch test, but its performance in simple problems is not
bad. The presence of spurious singular modes in the 9-node Lagyranye elements
with 2 x 2 quadrature was demonstrated numerically in continuum elements and
the diffusion equation in {19] and [20], respectively. Cook and Zhao-hua {21]
have proposed a control method which consists of perturbing the 9-node stiff-
ness by that of the 8-node serendipity element. This element passes the patch
test but requires condensation of the interior node, which is awkward for
nonlinear applications.

In this paper, a method for controlling (or stabilizing) the spurious
singular modes by using the consistency conditions in the manner of [11] is
developed. The control is first developed for the diffusion operator because
it is the simplest setting in which these modes appear; Section 2 gives the
discrete form of the diffusion equation to be used here, Section 3 describes
the spurious mode control procedure and Section 4 gives results for selected
problems. The important feature of these results is that with 2 x 2 quad-

rature of the 9-node element and hourglass control, the converyence rate of
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the element in the Ly-norm is still almost h3 for straight sided elements.

X

In Sections 5 and 6, the Mindlin type plate element and the appropriate
2 stabilization procedure are developed, respectively. In this setting, reduced
'
quadrature is imperative because full quadrature results in locking. Results
Y
are given in Section 7, which demonstrate almost h3 convergence for both
. curved and straight elements. Conclusions are given in Section 8.
N
.
e 2. Discrete Laplace Equaition With 9 Node Laygrange Element
-
" The Laplace (diffusion) equation is considered in the form
; (uij u’j)’i +s=0 (2.1)
S
: where
5 u = dependent variable, temperature for heat transfer;
“ @ = diffusivity constants, conductivity in the case of heat transfer;
s = source
<4
. Standard indicial notation will be used, with lower case indices desiygnating
X Cartesian components; all repeated indices are summed. Commas denote
% derivatives with respect to the following variables. All constants and
".
j variables are considered functions of x and y.
o,
% The dependent variable u and a test function su is approximated by shape
functions NI(x,y) in each element by
. ny . .
> u= Y NI(x,y) up=Nu (2.2)
‘ I=1
.
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where upper case subscripts refer to node numbers and ny is the number of

il
nodes possessed by the element. Followiny standard finite element procedures, E,‘,,

e
I's

N
R N

TR
~

Ay

the conductance matrix can be shown to be given by

"y »_3

P t'. ’

NS
PN

e _ e _
K = [Kp,] é Ny g iy Mg, g (2.3)
e

The above is often written in the form

K=/ 8 pBa (2.4)
Q

where

I,x (2.5a)

{-~]
n
)
"

[+ ] [o 3
D = 11 12 (2.5b)
%12 %2

where the symmetry of the coefficients 45 has been invoked; B is called the

discrete form of the gradient operator since (see Egs. (2.2) and (2.5a))

.
. .,c .
<L
)

o

NN

n A

N AT

wy= I Bipup =y st (2.6) R

£

and the transpose of B is the discrete form of the diveryence operator.

For the 9-node Lagrange element, the shape functions N; are
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7. where J(g) are the standard one-dimensional Lagrange interpolation functions T
- S
x in terms of the reference coordinates £,n (see Fig. 1) over the points (-1, O, :;:-.-_;
Y i

+1) which are .

E 2 . :

2 L,ie) =1 - ¢ (2.8) s
R ] i
» Ly(e) = 2 & (g+1) o
% 2 s
Y AR
3:: The reference plane is related to the physical plane by :::'_‘_{‘
n
. N e
N xj = L Npxjp = N (2.9)
N = o
;f N
“ where xji are the coordinates of node I; the nodal coordinates are sometimes NO
oo
arranged in 2 column matrices x;, where x; = X, X5 = Y. -
BN
When numerical quadrature is used, the conductance matrix, Eq. (4}, is e
- AN
evaluated by ReNg
) =g
-\ h] 4\-
—" nG ‘.:"::'
< At
7 K= 1 o 8 D (x)eGd (2.10)
% A= U ey
T A
Ve
where 353 = (xg, yg), a=1to ng» are the quadrature (integration) points :ﬁ::.':
SN
5 and N the quadrature weights includiny the Jacobian. The above can be :_f:‘:
[ S
- written as o
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The rank of Ee is at most equal to the rank of E. This is a consequence
- of the fact that the dimension of the null-space of B is equal to that of the
- null-space of Ee because if 8 u = 0, then ge u=0; see Eq. (2.11). With this
r P ~
¥ quadrature scheme the rank of E could be at most 8, since E has 8 rows;
. however one of these 8 rows is a linear combination of the other 7, so the
ﬁ rank of B and 5e is 7; this rank deficiency has also been reported in [20].
W 3. Spurious Mode Control for Laplace Eguation
"y
ﬁ: The essential feature of an effective control of spurious singular modes
. is that the stabilization matrix should not result in a violation of the
:k consistency conditions. The consistency conditions, which are in a sense
ff equivalent to the patch test [22, 23] require that
L bl x. = 6., for all (3.1)
el ~Ja ~J 1J ‘
b
] bl s=0 or Bs=0 (3.2)
- ~lq ~ ~ ~ ~
R il
y where ::';::'-'.:j
: s
~ :.-:‘.'":3
: e
: s
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s=10[01,1,1,1,1,1,1,1,1] (3.3)

Equations (3.1) and (3.2) were verified alyebraically for rectangular elements
and numerically for a larée variety of curved elements,

Note that Eq. (3.1) corresponds to the requirement that Xi,j ° 513 {cf.
Eqs. (2.5a), (2.9)), i.e. that the yradient of a linear field be computed
exactly, while Eq. (3.2) implies that any constant field has a zero

gradient. Using Eq. (2.11), Eq. (2.16) can be seen to imply that

K 5= (3.4) "R
e

. - A A

Thus s is in the null-space of B and Ee. The vector space spanned by s is o
,-_‘..r_‘,:

called the proper null-space of Ee because the gradient is expected to vanish Lefer
for a constant field u{x,y) which is associated with the nodal values ge = s. k”};j

It can also be shown that

T = T h = .‘:-:'.\
Eia h=0 or Bh=0 (3.5) R
Ee h=0 (3.6) PR
where
n = [+19 '1’ +1’ "1! 09 '1’ +1) '13 +1] (3'7)

Equation (3.9) has been verified alyebraically for rectangular elements and

N
e e .
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checked numerically for a large number of rhombic and curved elements; Eq.
(3.6) follows from (3.5) because of Eq. (2.11). The one-dimensional vector
space of h is called the improper null-space of E because the gradient of the
function u associated with the nodal values ge = h is obviously not zero, as
can be seen from a depiction of this mode in Fig. 2.

Simple examination of Eqs. (3.3) and (3.7) reveals that the vector h is

also orthogonal to s, i.e.

3=
-
17
]
o

(3.8)

so that the entire complement to the proper null spacr. of s is spanned by the
9 vectors b, and h.
~la ~

The control of the improper (spurious) mode is accomplished by defining

an additional generalized gradient § by

Tee (3.9a)

w?
]
=
s

and a generalized flux by

q=-4a7F (3.90)

where the determination of & is described later.

The resulting element conductance matrix is then given by

K =8 DB+5yy (3.10)
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where the second term in the above is the stabilization matrix [6,12].
[f the above stiffness matrix is to meet the consistency requirements on
linear fields, it is sufficient and necessary that § vanish for any nodal

values associated with the linear field [11]

U= Co+ X+ Coy = Co+ Cuxy (3.11a)
that is, for nodal values of u given by
4=0cys+Cyxy (3.11b)

the yeneralized gradient § must vanish. This is equivalent to the requirement

that
s+c.x.)=0 (3.12)

for all ¢j, i =0 to 2. Since the 10 vectors b; , s and h span the 9

dimensional vector space R9, the most general form of y is given by

4

x= L o[a1g Big* 32 Bogd * 298 + 308 (3.13)
a:

Substituting the above into Eq. (3.12) and using Eqs. (3.1) (3.2}, (3.5) and

{3.8) yields
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Since the above must hold for all cj, it follows that

ol
.'x"':' ‘ ¢

s

e

=0 (3.15a)

o
—
o
|
:

(3.15b)

(1]
O
133
—
1921
+
0 e~
[~1]
]
o

4
39 DTX + ]
a=1

(3.15¢)

1}
o

a2a B

Equations (3.15) represent 2 conditions on the 8 parameters a. . Therefore

TR ¢ 8 P o

ia
considerable leeway is available in the choice of these constants if :i"i
e
- \':'-"
consistency is only required with respect to linear fields. It can be met by ¢;:ﬁ
) o
i letting AYGRY
:. |'J_"i _’
N ." ‘-
: NS
: a = - l a hTX a=11t 4 (3 16&) '::':::
“ 1G 9"' ~? ° :\{\,‘:
h] 4 -\"-“
5 et
: a, =-Lan «=1to4 (3.16b)
': ZG 4 9"' 'x’ .
b which with Eqs. (3.13) and (3.15) gives
S
2y
. 1T, b .4
: r=h-=0x) 1 b+ (hy 15,1 (3.17)
. 4 a=1 a=1
[4
y
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The common constant ag has been omitted.

For purposes of constructing the stabilization matrix, (3.10), the
constant a is expressed in terms of a stabilization parameter

e by

(3.18)

In this form € = 1 closely approximates the exactly integrated matrix for

rectangles when g is isotropic.

Remark. This procedure involves 8 arbitrary constants, ay, and 3y, SO it
would be advantayeouc if consistency of the quadratic and biquadratic poly-
nomials could also be enforced. However, the resulting consistency equations

are singular and we have not been able to circumvent this difficulty.

Furthermore, quadratic consistency is not satisfied by the 9-node element when

the element is not a parallellogram, that is,

T Q
Dig U # usy(x)) (3.19)

when u is a quadratic function of (x,y) and u are its nodal values.

Remark: Equation (3.17) can also be written in a form easily implemented on a

computer as follows

g 3 Q
L oBlxy) +hy azl Byp(xy)] (3.20)

where

.'h‘ NI A
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h, = hix hy = nly (3.21)

and 53 are the 4 quadrature points.

4. Numerical Examples for the Laplace Equation

Several problems were solved for the purpose of examining the performance
of this spurious mode control procedure, with particular emphasis on the rates
of convergence and the effects of varying the parameter e¢. All of the
problems solved were linear and, except for one, steady-state. For
simplicity, the dependent variable u is called the temperature throughout this
section,

Example 1 is defined in Fig. 3. Three meshes were used for this
problem., The temperature distribution alonyg the axis B-C is compared with the
analytic solution in Fig. 4. Figure 5 shows the results for the fine mesh
with € = 0.1 and 1.0, respectively. It can be seen that in this problem the
effect of the stabilization parameter ¢ is minimal. Because this problem has
a prescribea temperature along all boundaries (Dirichiet type), 2 x 2
quadrature without stabilization does not lead to any spurious modes, so these
solutions primarily show that the introduction of this spurious mode control
procedure does not distort the solution.

Example 2 is described in Fig. 6. Again, three meshes were used as shown
in fig. 6. Four-fold symmetry was used in these problems and the lines of
symmetry are considered insulated, i.e. the gradient vanishes along the lines
x =0 and y = 0. Since this is a natural boundary condition, it need not be

explicitly enforced. The solutions for three different values of ¢ are given
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in Fiy. 7. This problem, because of the shortaye of essential boundary

conditions, can exhibit spurious modes, and as can be seen, for the lowest

DA .

RSN

values of €, oscillations in the temperature u are quite clear. For RN
o . : AEAN,

e = 1.0, the oscillations are almost completely eliminated and the solution Ct}:,\
IRV

R

ayrees well with the analytic solution. Note that the results with
insufficient stabilization do not oscillate about the correct solution.

Example 3 is identical to example 2 except that a Dirichlet boundary
condition is applied to the circumference, see Fig. 6. Results for the three
meshes in Fig. 6 are given in Fig. 8, and compared to the analytic solution;
results for two values of ¢ are given in Fig. 9. Both ayree well with the
analytic solution.

Figure 10 shows the L, norm of error as a function of element size h for

examples 1 and 3, which are rectanyular and circular domains, respectively.

The L, norm was computed by evaluatiny

n .2 TN
2 = 7e [ (UFEM _ uana]yt1c) @ :ﬁ:;:}_
e=1 Q et
e AR
LN
and 5 x 5 quadrature was used to evaluate the above integral in each element. SR
EACACN
Results for both the stabilization procedure with € = 1 and 3 x 3 quadrature :i:}}?
PSS
Rl IR,
are yiven. For the square domain, where the elements are all straight sided, w

the slope of this curve is 2.95 for both the stabilization procedure and 3 x 3

quadrature. Thus, for this case the stabilization procedure has no undesir-

able effects on the rate of converyence. In the circular domain, example 3,

("o
where some of the elements are curved and irreyular, the situation is more RN
Al
complex. For the meshes studied, the absolute accuracy of 3 x 3 quadrature is :i:f:j'
\:’x:_\ A
better than that of stabilization procedure. However, 3 x 3 quadrature exhi- N
(g

et
M AR

AP S I
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bits a definite reduction in the rate of convergence with decreasing element

size which is absent in the stabilized element. Average slopes are 1.9 for

,Q.}-u:_:.
: 2x2 with stabilization, 1.4 for 3 x 3 quadrature, so for these irregular Qﬁ:i
‘- l\’!-'.
- meshes, neither 3 x 3 quadrature nor the stabilization procedure retains the R;::
\ N
optimal h3 convergence of this element. The results for even higher order j"&'f
(V8
- St ™
N quadrature, 4 x 4 and 5 x 5, are almost identical to that for 3 x 3 :ﬁ:ﬁ‘
K BCICA
-~ LN
> quadrature. glﬁlj
“~
- : < e s
Figure 11 is included to show the effect of spurious modes more o
T
!2 dramatically. In this probiem, a circular domain with an insulated outer e
" w .'.“:':‘:
e boundary was considered. A point source which is a step function in time is s
» K -'.:
i applied at the center of the domain. The time step in this problem is one, e
]
'j and evidence of spurious oscillations is quite clear within 20 time steps.
;: Within 40 time steps, the entire solution is dominated by the spurious
- oscillations. Note that in this plot all nodes are connected by solid lines,
>~ NN
[~ so each 9-node element is represented by 4 adjacent elements in Fig. 11. :fniu
1 NN
: N
- . .
5. Discrete C° Plate Equations N
; T
N el
- The general theory for CO plates, which are often called Mindlin plates, ;t;il
.: - e
" is presented in [24]. 1In this theory, the deformation of the plate is :::::
- Y. ' ™
: described by three dependent variables; a transverse deflection w(x,y) and A
? e
; rotations ex(x,y) and ey(x,y). The element has 9 nodes with 3 degrees of E\i:$
. A
v freedom per node and the three fields are approximated in the element by the 9 1;"
shape functions, Egs. (2.7 - 2.8) in the form e
n‘:'-‘:\
2 n NN
% N N0
5 Miy) = L N s N (5.1) TN
] I=1 \-:: oy
. LA
Ry
¢ e
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D = KGh[ ] p= (5.7)
0 1 12(1 - V%)

Here h is the thickness, E is Young's modulus, G is the shear modulus,

k is the shear factor and v is Poisson's ratio.

This element locks if 3 x 3 quadrature is used for both the bending and

shear stiffnesses; therefore selective reduced integration is recommended
[24]. In this paper, we will use 2 x 2 quadrature for both the shear and
bending stiffness and stabilize the kinematic modes.

For the purpose of analyzing this stiffness, we perform the steps
indicated in Section z in going from Eq. (2.4) to Eq. (2.10) and write the

element stiffness for 2 x 2 quadrature in the form

(5.8)
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Q

a’

where x°, a =1 to n., are the Gauss quadrature points; in this case ng = 4.
The number of rows in the matrix E is 20 so the rank of 59 is at most 20;

the number of degrees of freedom is 27; {9 nodes x 3 deyrees of freedom/per

node). Thus, since there are 3 rigid body modes, the rank deficiency of the

element stiffness is at least 4. The singular modes are given in Table 1.

6. Spurious Mode Control for Plate Element

The spurious modes which are of principal concern are the w, 8y and ey
modes. The process of control is analogous to that in the Laplace equation,
except that whereas the singular modes in the Laplace equation can be
controlled quite stiffly with values of ¢ of the order of 1, some of the modes
in the plate problem are associated with locking and therefore care must be
taken in their control.

For the purpose of the control of these 3 modes, three generalized

strains are defined by

{ W (6.1a)
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: 8, 2 2 ~X ::;;g‘

~
g

1} ~
5 G =Gy =7yl @ (6.1c) N
% o, BT Y ‘ P
XN . Tl
- The structure of the proper null-space for the plate is more complex than AN
D\ e
8] o0
Y for the diffusion equation; it is spanned by the 3 vectors which are called N
A\ -
riyid body modes in Table 1. These vectors include both the linear field _
’ , B
‘.3 vectors x; and the constant vector s. In spite of this added complexity, the el
= Y
o basic conditions on y; can be reduced to those on y in the diffusion equation: e
5 R
4 1. x4 should not affect linear fields: S
.y f-,r&
N 2. X should span the complement of the proper null-space, .';Ej
oy -_:* J
: Therefore, the same procedure as given in Section 3 can be used to ,jE‘
) (‘.: !
p develop y; and it follows that all three of the y, operators are identical and "i‘
A given by Eq. (3.17). :::-E::.
o
\.:..."
! The generalized stresses are given by :j.j:ﬁ:
.r NN
S
- . . H for i =1 to 3 S
- Qi = <5 9 no sum on i (6.2) 3
- A
oi M \'.
i H ;5: .
: where C are yiven by Tt
"4 o
~ 2 -
L r h® H D \~‘..:-'
i M- (6.3a) :;?‘-:]
" 1 A R
» Ao
at LN
Py
- Ho oM. Y
. Cy = C3 reH xGh (6.3b) :_:_._::
- \‘:.‘
R H=xke [ B! b, dA (6.4) L
y T00 A ~j ~j . ¥
- R
o Y
2! NN
2/ _:.'{.
: - A
:‘:‘::,'




The constant H was herein obtained by 2 x 2 quadrature, but it is likely that
estimates of H with sufficient accuracy could more easily be obtained.

The gyeneralized strain q,, as in the 4 node quadrilateral [13], is
associated with locking, so r, should be small; sugyested values are:
0.01 < Py € 0.1 . In this range, the results have been found to be almost
independent of r,. The normalization of Eqs. (6.3) allows r, to be applicable
to elements with a wide variety of shapes and aspect ratios, for we have found
no lockiny or evidence of spurious modes with r, in this ranye. The
generalized strains g and q3 are not associated with a locking mode, so g is
usually chosen of order 1.0.

The element stiffness matrix is given by

K = k(2X2) 4 (A (6.5a)
C'i' X IT Y 0
H _ H -
K= Q Cxx Q (6.5b)
q
0 Q c*; X xT

(
5(2x2)

where EH is the stabilization matrix and the standard element matrix

obtained by 2x2 quadrature.
If the degrees of freedom of the element are arranged in the conventional

order with all deygyrees of freedom at each node in sequence, i.e. with

T .
g - (Wl, exl, eyl, W, g o o o o exg’ eyg) (6.6)
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then EH can be easily computed by the following formula

Sl

0T

x )
- For 1=1to9,J=1to9 o
- ’ =, J‘,_J'
- ANCS
: %
‘ H oo
Y1 Yy L=31-2, K=3) -2 —
n o= M L=31-1, k=3 -1 5.7 g
b LK C2 'YI YJ = = iy = - (6 . ) -:,:',:-
‘ H _ _ e
3T Yy L =3I, K=3J DR
] H R
. A1l other K[\ are zero. b
. LAY
' B
* Thus the implementation of this element involves simply the standard i
- '? }’I;n
- computation of the element stiffness by 2 x 2 quadrature, followed by the N
> eI
°, ’.‘1’ -
< computation of y by Eq. (3.17) (or (3.20)) and EH by the above. }?h,
R
[} "« |
- 7. Numerical Examples for Plate
. Several problems were solved to examine the performance of this spurious
¢ mode control procedure in the plate element.
2
;: The first problem, example 5, is a clamped, circular plate of radius R
‘.l - I3 - .
i subjected to a uniform load g. Results obtained Mesh B from Fig. 6 for two
» values of ry are compared to the analytic solution in Fig. 12. In both cases, RO
E RS
y N '._
2 the 8 - hourglass control, re = 1.0, The results, as can be seen, are ;:E}L
$ independent of M in this range, and agree very well with the analytic ;:xg
I3 ALY
4 solution, BA
N BN
Figure 13 shows the results for the same problem with Py = 0.1 for the 3 D
Y N
:, meshes shown in Fig. 6. Even with the coarse mesh, the results agree well ?}:l'
(] - KK
e with the analytic solution. ik
. (9%
: 2%
- K
A ;'.'r'*'f*
o
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Figure 14 shows the converyence rates for this circular clamped plate
problem and a uniformly-loaded square plate problem with clamped supports;
the meshes shown in Fig. 3 were used for a quarter of the plate in the square

plate problem, The L, error is here defined as

2

2 e f (WFEM _ wana]y‘mc) da (7.1)
Q

E- =
e

[ o =]

1 .e

and 5 x 5 quadrature was used to evaluate the above integral in each

=0.1, r, =1.0 .

element. In all cases, r 9

w
Several points are of interest:

i} The rate of convergence in w for the stabilization method for the square
plate is almost 3.0.

ii) The rate of convergence for the circular plate problem with stabilization
is 2.6. While the initial rate with selective-reduced integration is also
2.6, the convergence rate diminishes as the mesh is refined.

iii) The behavior with an inconsistent hourglass control y = h, i.e.

where the last term in Eq. (3.17) is omitted, is similar to that

with selective-reduced integration.

While the improved rate of convergence for the circular plate as compared
to the Laplacian on a circular domain may be puzzling at first, it is probably
attributable to the omission of the rotations from the error in Eq. (7.1).

The performance of the method in a problem characterized by severe
singular modes is shown in Figs. 15 and 16, which is a uniformly-iocaded square
plate with corner supports, such as that studied in [13]. For small values
of r., spatial oscillations in w are clearly evident. Figure 16 shows the

normalized displacement of a node next to the center for the corner supported
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N and clamped square plates. Note that as for the 4-node quadrilateral [13], :(f:

\.: o

the stabilization procedure gives acceptable results for a large range ..

"

Eﬁ of ry» SO the results are not sensitive to its selection. The clamped plate

¥+ 7,

vz
!
t
4

locks for large values of M but exhibits no modes as " tends to zero, 'fé
whereas the corner supported plate diverges for small . but does not lock.

Only the intermediate values yive acceptable solutions to both problems.

o
.

Figure 17 shows the displacements for a circular thick-plate subjected to

a point load at its center. The boundaries are clamped and the following

parameters were considered: E = 1.09 x 100 psi; v = 0.3; thickness h = 2 in;

radius R = 5 in. Mesh B in Fiy. 6 was used. L
In this case, 2 x 2 quadrature leads to near singularity of the assembled i
stiffness, and the results with no stabilization exhibit marked oscil-

lations. Effective suppression of oscillations in this case requires a larger

value of . (0.1) than in any other problem we have solved, and the displace-

ment at the center is more sensitive to P

Figure 18 shows the results obtained for this element in the well-known
"single-element twist" problem [25]. 3":'

The last well-known difficult problem is the rhombic plate. The two .
meshes shown in Fig. 19 were considered. Displacements and moments are

reported in Figs. 20 and 21.
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) 1. Nomeclature, local node numbers and quadrature points for 9-node Lagrange -:S:'
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& 2. Spurious singular mode h. N
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' 3. Problem description for example 1l: square domain with prescribed _
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‘- 5. Temperature u along B-C for exampie 1 with medium mesh AL
. and ¢ = 0.1 and 1.0.

6. Problem description for example 2 and 3: circular domain with Neumann and
Dirichlet boundaries.
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7. Temperature d a]ong the radius coincident with the x-axis for the medium
-5 %0”

. .ty
Ruas LI
«
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mesh € = 10 7, » and 1.0 for example 2. «
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oy meshes for example 3 with ¢ = 1.0. NI
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. 9. Temperature u along the radius coincident with the x-axis for example 3 ﬁqu
i with € = 0.1 and 1.0. 2t
ey 10. Convergence rates for examples 1 (square) and 3 (circular) with 2 x 2 f?'f
- quadrature, ¢ = 1.0 and 3 x 3 quadrature, e
l:: 11. Temperature distributions for example 4, showing the evolution of spurious 23“f“
li oscillations with 2 x 2 quadrature in the absence of stabilization. i
Z;j 12, Displacement w along a radius, line B-C in Fig. 6, for a clamped, circular ,i};
" plate for two values of P N
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o 13, Displacement w along a radius, line B-C in Fig. 6, for three meshes for E}S
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18. Performance of the stabilized element for the single element twist.
19. Mesh for rhombic plate problem; uniformly loaded with simple supports.
20. Displacement w of rhombic plate for various values of M®

21. Comparison of moments with analytic solution for rhombic plate for
Ty = 0.1, rg = 1.0 and Py = 0.0.
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Table 1

lero-Energy Modes At Biquadratic Plate Element U2

w ] ] Name

—
—

Rigid body modes 1 Translation

v
c

c

|
Ix
{e)
)

y - rotation

—
—

X - rotation

w
=<
v
b=

—
—

Kinematic modes 1

=2

g W - spurious

0

—

m—-l
+
W
po g

—
o
<D

]

spurious

—

QT §T + 3QT 8.~ spurious

R w ~n
P LT { o)

X twist

a - ~ -

where x = X s , y=1x
and there 1s no sum on 1i.

W
-
><
"
x
(<2}
o
3
a
-
s
il
<
-
(=]
pary
[

At the present time, this mode is valid for rectangular shape element
only.
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